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Distribution of occupation numbers in finite Fermi systems
and role of interaction in chaos and thermalization
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A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of
interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac
distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are
absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are
considered. All results are confirmed by numerical experiments in the two-body random interaction model.
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When studying numerous problems related to many-bodyrhe value ofl’ =2[ (AE)?]*? can be found using the follow-
compound states one needs to know whether the laws @hg relations for the spreading width of basis components:
statistical physics can be used in the description of a particu-
lar guantum system with a finite number of interacting par- (AE)ﬁEE |Cf<”|2(Ek— EM)2= Z Hﬁp, ®)
ticles (nucleus, atom, etg.The aim of the present work is to i p#k
develop an accurate method for the calculation of occupation
numbers(and other statistical average valués finite iso- ~ With Hy, standing for nondiagonal Hamiltonian matrix ele-
lated systems and compare the results with the Fermi-Diragents defined by residual interactidh For example, in the
(FD) distribution. The latter is priori valid in infinite sys- model ofn particles distributed ovem orbitals we havg3]
tems of noninteracting particles. We show that the accuracyl'/2)?=(AE)?=V3n(n—1)(m—n)(3+m—n)/4. Here V3
of the FD distribution in finite systems of interacting par- =|Vy, 4| is the mean square value of two-body residual
ticles can be improved by introduction of the effective tem-interaction matrix elements.
perature which absorbs statistical effects of the interaction. Thus, we can rewrite Eq(1) in the form of the

For finite systems of interacting Fermi particles the occu- F distribution” which gives the actual distribution of oc-
pation numbers of single-particle orbitals can be found if cupation numbers in finite Fermi systems,
we know the expansion of exact eigenstdigsin terms of
Slater determinant§‘shell model statesy

> nPF(E—E)

nS(E):—EkF(Ek— B 4
ns:<i|ﬁs|i>:2 |C{<i)|2<k|ﬁs|k>v (1)
k Ex=Hi=2 nFest+ X ugondnlk,
s s>p
iy=> Cl|k), |k)=al---al|0 2 .
D EK k), k) =ay--2,/0) @ wheren®¥=(k|n k) equals 0 or 1¢, are the energies of

single-particle orbitals, ands,= Vs, ., is the diagonal ma-
trix element of residual interaction. In practice, the second
gt;rm in the definition ofg, can be substantially reduced by

n appropriate choice of the mean field. The denominator in
Eqg. (4) stands for the normalization of theé distribution.
a’_his “microcanonical” distribution is convenient for nu-
merical calculations.

It is instructive to compare th& distribution (4) with
occupation numbers obtained by making use of the standard
canonical distribution,

Here,ﬁs=a;raS is the occupation number operator.

If the residual interaction between the particles is stron
enough, the expansiof2) can be treated as a ‘“‘chaotic”
superposition of the basis stat@e) . In this case mean
square values of the expansion coefficients are smooth fun
tions of the energy difference between the endegyof the
basis statdk) and the energyE!) of the exact statei),
[COP=F{)=FO(E,~EW).

In numerical studies of the Ce atdj], the s-d nuclear
shell mode[2] and random two-body interaction moda|4] >inVexp —EV/T)
it was demonstrated that typical shape of exact eigenstates ns(T)= S exp—EV/T) ®)
(“spreading function”) Fﬁ')practically does not depend on a '
particular system and has a universal form characterized bynereT is the temperature. The difference between Edjs.
the spreading widtl" . For example, for the Ce atof] the 514 (5) is that the summation in Ed4) is performed over
squared Breit-Wigner shape Bf has been found in a good simple basis states while in the canonical distribution the
agreement  with  numerical  data, F{«[(Ex  summation is carried out over exact eigenstates. Another dif-
—EM—A)2+12/4]72, whereA{"<T is a small shifsee  ference is that in Eq(4) the occupation numbers are calcu-
below), which in the zero approximation can be neglected.lated for a specific energl of system unlike specific tem-
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peratureT in Eg. (5). However, Egs.5) and (4) can be assumed that the number of particles is lange,1. How-
compared with each other by settifg=(E). ever, the equilibrium distribution for occupation numbers
It is important to demonstrate that tiedistribution (4)  arises for much weaker condition, namely, when the number
tends to the standard FD distribution in the limit of large of principal component®Npc in exact eigenstatefsee Eq.
number of particles. By performing explicitly the summation (2)] is large,Npc~I'/D>1 . In this case the fluctuations of
overns=0 andns=1, the expressiof4) can be written in  the occupation numbers N2 . Since the energy interval

the form _ D for many-body states is exponentially small, it is enough
ny(E)= 0+Zy(n—1E—¢) ®) to have relatively weak residual interaction
S ZA(n—1E—"€9)+Z(n,E)’ Vo>D~dgexp(—n) in order to get the equilibrium distribu-
tion.

Here, ~the partition  function is introduced,  There are four regions of parameters depending on the
Zs(n,E) =2 F(E,—E), where the summation is taken over strength of interaction and number of particlés:‘regular”
all states ofn particles with the orbitak excluded. Corre-  gtatesNp~1 for V,<D:; (i) “initial chaotization,” which

spondingly, the sum irZy(n—1E—) is taken.ov.er the s characterized by a relatively large number of “random”
states oin—1 particles with the orbitas excluded; this sum principal components, sayNpc~T/D=10; however, the

appears from the terms for which the orbitlis filled fluctuations are still laraeN=Y2=0.1- (iii) equilibrium E
(ng=1). For such states one can writeE,(n) geNpc =0.1; (iil) eq

et Ex(n—1), whereE,(n— 1) is the energy of the basis dlftlr/|2but|on(4), which is charac_terlz_ed by small fluctuations,
o . _ ) Npc <1 or Npc~I'/D=100; in this case components of
state withn—1 particles ands= e+ 2p..sUsgn,” Note that eigenstates can be treated as random variables with the vari-
to add the energy, to E,(n—1) is the same as to subtract it 9 F and the Ea(4) ai © astal do' t'bat'a esf th €va
from E because® = F(E+ €.—E). anceF and the q( ) gives actual distri ution of the occu-
pation numbers in quantum systems with interacting par-
ticles; (iv) canonical distributiori5), which arises in the case
of equilibrium plus large number of particles. If, in addition,
the conditionI’<<nd, is fulfilled, the standard FD distribu-
tion is valid.
In practice, the conditioriiv) of “thermalization” is not
easy to satisfy in realistic systems like atoms or nuclei since

By taking’e independent ok we assume the averaging
over the basis states near the endegg possible. The num-
ber of termsN in the partition functionZg is exponentially
large, N=m!/(m—n)!n!, therefore, one should consider
InZ, which has slow dependence onin the case of a large
number of particles one can get Ziin—AnE—)

zlgé Sénlgé_fgénl_%iss lea dSV\':getLee “FD('stt: Oznésiﬁr;;'giss_ n in this estimate is, in fact, the number of “active” particles
tributiqu = yp (number of particles in the valence shelither than the total

_ number of particles. Thus, the equilibriufmdistribution(4),
Ns=[1+exp ast Bses)] ™. (7)  which does not require the thermalization conditiov) is
more accurate.

To test the above statements we have performed a de-
tailed numerical study of the model of two-body random
interaction. This modelsee details i13,4]) is described by
few parameters: numberof particles, numbem of orbitals,
and ratioV,/d, of the two-body interaction strength to the
spacing between single-particle levels. For very small inter-

action the eigenstates are “regular” and the occupation num-
ES Ns=N, 23 63n5+g‘p Usphsp=E. (8) ber distributionng is a strongly fluctuating function even
after averaging over a number of close eigenstates; see Fig.

In the case of many noninteracting particigdeal gag 1. With an increase of the interaction keeping the number of
similar procedure transforms the canonical distribut®nto  particles small, we obtain equilibriuf@ distribution, which
the FD distribution(see, e.g.[5]). It is easy to check that the is different from the FD distributiorisee below.
canonical distribution coincides with the FD distribution If, instead, we increase the number of particles keeping
with a high accuracy even for a very small number of par-the interaction smally,<d,, the distribution(4) tends to the
ticles, provided the number of effectively occupied orbitals isFD one[Fig. 2(a)]. Finally, when the strength of the interac-
large (when T>¢€ or u>¢€). However, for the fixed total tion is beyond the ideal gas approximation, the equilibrium
energy E, the temperaturdl in these two distributions is distribution strongly deviates from the standard FD distribu-
different. This difference can be explained by the depention [Fig. 2(b)]. In fact, the latter result happens for a rela-
dence of the parameter, on €, [see Eq(7)]. Indeed, using tively small interactionVy~ 0.1d, which, however, results in
expansionas= a(eg) + a’(e,— €g) one can obtain the rela- the large value of spreading width>d, sincel’ increases
tion between the FDrp) and canonical 8) inverse tem-  with the number of particles very fast.
peraturesBep=B+a’€er. However, the accuracy of the FD distribution can be im-

Now, we can study the accuracy of the distributigAl proved by renormalizing the temperature. The point is that
(5), and(7) in the description of realistic quantum systems. statistical effects of the interaction can be, at least in part,
As is known, the FD distribution is valid if the gas of par- described by introducing an effective temperature, which is
ticles can be considered as ideal; therefore, when the residugteater than that determined from E§) at E=E®" . Thus,
interaction is small enough, <u~nd, orI'<T (heredyis  we showed in Ref4] that the interaction between particles,
the mean energy spacing for single-particle syatéss also ~ which leads to the spreading widthsof the single-particle

If the number of substantially occupied orbitals in the defi-
nition of Z is large, the parameters; and B are not sen-
sitive as to which particular orbitad is excluded from the
sum and one can assume=a=—u/T,Bs=B=1/T. The
chemical potentia. and temperaturd@ can be found from
the conditions
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FIG. 1. Distribution of occupation numbeng for n=4 particles
and m=11 orbitals for the two-body random interaction model R
[3,4] with dy=1, weak interactionV,=0.04, and total energy
E=17.33 (to compare with the ground state enerBy~12.1).
Dashed boxes represent numerical data averaged over 20 Hamil-
tonian matrices of the sizZd =330 with different realization of the
random interaction and over the energy ranBe-SE with
SE=0.25. Circles correspond to the FD distribution with tempera-
ture T and chemical potentigk defined by total numben of par-
ticles and total energf . Stars are given by thE distribution (4)
for ng(E). The number of principal components in exact eigenstates
is Npc=13. The latter has been calculated via the inverse partici-
pation ratio,Npc=[=F2(E,—E)] *. Large fluctuations~Np2"
are seen.

FIG. 2. Distribution of occupation numbeng for larger number
orbitals, can be mimicked by an increase of the temperaturey=14 of particles andn=28 of orbitals with the samel, and
namely, ng(es,y, T)~ng(es,y=0T+AT)=ny (e, T); for temperature. _Dire_ct diagona!ization of huge Hamiltgnia_n matrices is
y<T one can obtaim T~ 72/481—_ Below we present two not pos_'slb_le in this case. Clrcle_s are the FD distribution; stars are
stronger arguments. Firstly, we are mainly interested in thdhe F distribution (4). (&) Weak interactionV,=0.003, I'~0.62,
eigenstates in the lower half of the spectrum. For them thérc™60- (b) Strong interaction=0.08, I'~16.6, Npc=~11 000.
mean-field energy8) is substantially higher than the eigen-
valueE®. Indeed, the mean-field energy “does not know” E. and variancesdg)? and (og)?= (0g)?+ (AE)? respec-
about the effect of level repulsion, which shifts lower eigen-tively. Therefore, one can obtain simple estimates of the
values downwardghis shift appears in the second-order per-shifts:
turbation theory. Therefore, it is better to estimakeby the _ _ _ _
unperturbed energh;; instead of the eigenvalug®. Thus, AV =(E.—EV)(AE)Y2(0g)?, AY=2A. (10
the energyE=E®"+ A{)=H;;, which is higher than the en-
ergy of the eigenstate, should be used in &). R .

ggecondly, tghere is another effect Which?‘;ntributes to thér aking into account these energy shifts and @.one can

energy shiftA®). The density of states rapidly increases with ou e the increase of the effective temperature of the
Fermi gas due to the interaction.

energy, and th? number.of higher-energy basis states ad- The accurate calculation of this effect requires more de-
mixed to the eigenstate is greater than that of the lower:

energy basis statéthe extreme example is the ground statet?"eg If?]o:lvrledgr(? ?:[t hensE)reaglng ;lén?ﬁn énclur?éng(il;ts
which is made up of higher basis components anly is ca onresonant” energy dependence g a )

easy to estimate the corresponding increase of the mean-fie,'[l_&ct))wsver(’;)he occutpatlon num.lﬁerstdetermltr}edl byFtrr]‘(da!s- f
energy due to this effect if the spreading function rioution aré not very sensitive o a particuiar choice o

F[Ex—EW] is symmetric(to separate the two effects we set the spreading function provided the conditiofi¥pc>1 and
A(li)zo here: Eq. (3) are fulfilled. To check this statement we have con-

sidered the form of the spreading function which takes into
account important features of the actual distributﬁfH If
d(Inpg)——— ) o : .
(AE)2. (9) the interaction is small, in the region not very far from the
dE maximum, F ~D/Tcp~?, the spreading functiof{’ can
be described by the Breit-Wigner form with the spreading
Herep, is the unperturbed level density, apiE)? is given  width I'gy,=27V?/D [6]. Also, there is a shift of the maxi-
by Eq. (3). According to[7], the shape of the density of mum due to the repulsion between neighboring levels. These
states fom>n>1 is close to Gaussian for both noninteract- arguments allow us to suggest the improved expression for
ing and interacting particles, with the center of the spectrunthe spreading function valid fdrgy<<I":

A= f F (Ex—ED) po(E) dEy=



R16 V. V. FLAMBAUM AND F. M. IZRAILEV 55

can write the extrapolation expression both for small and
large values oW, (see alsd8]) I'y =gy ['/(I'gw+1I"). We
have also checked that for large numids- of principal
components the distribution of the occupation numbers does
not depend odf’4; this fact can be treated as a signature of
the equilibrium.

Finally, we discuss the transition to mesoscopic systems.
The result depends on the dimensionalityof the system
sincedo~1"2Vo~179, therefore Vy/dy~1~"2), wherel
is the size of the system. Thus, fde=1 one hasVy,>d,,
which means that strong mixing@haos starts just from the
ground state. This is in accordance with the absence of a gap
in the distribution of occupation numbers in the one-
o . dimensional(1D) case(Luttinger liquid). In the 3D case we

FIG. 3. Distribution of occupation numbers for th_e Ce atom have Vy<d, and the admixture of the higher states to the
parametersi=4m=11do=1V,=0.12Npc~48 (boxes in com- 4.4 nq state can be considered perturbatively, which is con-
parison with the FD distribution, with the corrected temperatureSistent with the nonzero gap &=0 . One can see that the
(circles and with theF distribution (starg. . . .

transition between regular regiaih) and the initial chaos
EJp(EV)]-12 region Il in the 3D case occurs for high states when
Flo [Po(Ex f( ] ~ 11  Vo>D~doexp(-n3), wheren? «EY2is a number of excited
2 ri 5 12 particles. On the other hand, the transition from the fluctuat-
(Bx—E)"+ 4 [(Ek_ B)™+ 4 ing to the equilibrium regime(ll)— (lll), requires the de-
_ . crease ofD only by one order of magnituder3 ~n3 +2 .
where E=EM+A{), T'y=Tgy, and T',=T'¥T;. The This means that such transition in 3D is a very sharp “phase
value ofI';, is found from the exact relatiof8). Note that transition.”
F(k') from Eq.(11) automatically satisfies another exact rela- In conclusion, we developed a method for the calculation
tion,EiE(i)F(ki)=Ek; note that the contribution of the energy Of the occupation numbers in finite systems of interacting
shift A{) is compensated by the increase of the level densitp@rticles. The method is based on the assumption that exact
p(ED). elgenstates are “chaotic” superpos[tlons of 'Fhe shell—quel
It follows from Eq. (11) that the energy shift due to the basis states, and the smooth spreading function for the eigen-

enhanced admixture of higher basis components is two time3ateS components can be introduced. This assumption and
smaller than in Eq(9), since the ncrease of densips s, % 208 S8 W20 R Y e e nroduced
: —-1/2 ; .

partially compensated by the factog in Eq. (11): can be used for further studies of statistical and thermody-
d(ln\/ﬁ)—2 0 namic properties of finite systems of interacting particles.

= T(AE) =Ar. (12) We also demonstrated that occupation numbers in the sys-

tems of interacting particles can be reasonably described by

Thus, we should substitute the valueE=E®" Fermi-Dirac distribution with renormalized parameters. As

+A(li)+A(2‘)zzHii —E® into Eq.(8). After taking this shift usual, mean fieldand possibly other “regular” effeciscan

into account the FD expression gives the same result as tH included into single-particle energies. Statistical ef-

F distribution, as shown in Fig.(B), where the FD curve fects of the residual interactiofmainly due to nondiagonal

(circles is shifted with respect to that given by stars; bothmatrix elements of the Hamiltonian matriincrease effec-

curves also agree with the numerical experim@idg. 3. tive temperature.

For smallV, and a large number of particles we have we thank Y. Fyodorov, G. Gribakin, M. Kuchiev, I.
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(11 has the Breit-Wigner shape with the widilg,,. How-  discussions; F.M.. is very grateful to the staff of School of
ever, numerical calculation$1,2,8 demonstrate that at Physics, University of New South Wales for the hospitality
larger interactiorV, the width of the spreading function be- during his visit when this work was done. This work was
comes linear invy and it is better to put’;=I",=I". One  supported by the Australian Research Council.
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