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Distribution of occupation numbers in finite Fermi systems
and role of interaction in chaos and thermalization

V. V. Flambaum1,2 and F. M. Izrailev1,2
1School of Physics, University of New South Wales, Sydney 2052, Australia

2Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
~Received 17 October 1996!

A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of
interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac
distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are
absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are
considered. All results are confirmed by numerical experiments in the two-body random interaction model.
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When studying numerous problems related to many-b
compound states one needs to know whether the law
statistical physics can be used in the description of a part
lar quantum system with a finite number of interacting p
ticles ~nucleus, atom, etc.!. The aim of the present work is t
develop an accurate method for the calculation of occupa
numbers~and other statistical average values! in finite iso-
lated systems and compare the results with the Fermi-D
~FD! distribution. The latter isa priori valid in infinite sys-
tems of noninteracting particles. We show that the accur
of the FD distribution in finite systems of interacting pa
ticles can be improved by introduction of the effective te
perature which absorbs statistical effects of the interactio

For finite systems of interacting Fermi particles the oc
pation numbersns of single-particle orbitals can be found
we know the expansion of exact eigenstatesu i & in terms of
Slater determinants~‘‘shell model states’’!

ns5^ i un̂su i &5(
k

uCk
~ i !u2^kun̂suk&, ~1!

u i &5(
k
Ck

~ i !uk&, uk&5a1
†•••an

†u0& ~2!

Here,n̂s5as
†as is the occupation number operator.

If the residual interaction between the particles is stro
enough, the expansion~2! can be treated as a ‘‘chaotic
superposition of the basis statesuk& . In this case mean
square values of the expansion coefficients are smooth f
tions of the energy difference between the energyEk of the
basis stateuk& and the energyE( i ) of the exact stateu i &,
uCk

( i )u2[Fk
( i )5F ( i )(Ek2E( i )).

In numerical studies of the Ce atom@1#, the s-d nuclear
shell model@2# and random two-body interaction model@3,4#
it was demonstrated that typical shape of exact eigenst
~‘‘spreading function’’! Fk

( i )practically does not depend on
particular system and has a universal form characterized
the spreading widthG . For example, for the Ce atom@1# the
squared Breit-Wigner shape ofFk

( i ) has been found in a goo
agreement with numerical data, Fk

( i )}@(Ek

2E( i )2D1
( i ))21G2/4]22, whereD1

( i )!G is a small shift~see
below!, which in the zero approximation can be neglect
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The value ofG52@(DE)2#1/2 can be found using the follow
ing relations for the spreading width of basis component

~DE!k
2[(

i
uCk

~ i !u2~Ek2E~ i !!25 (
pÞk

Hkp
2 , ~3!

with Hkp standing for nondiagonal Hamiltonian matrix el
ments defined by residual interactionV. For example, in the
model ofn particles distributed overm orbitals we have@3#
(G/2)25(DE)25V0

2n(n21)(m2n)(31m2n)/4. Here V0
2

5uVst→pqu2 is the mean square value of two-body residu
interaction matrix elements.

Thus, we can rewrite Eq.~1! in the form of the
‘‘ F distribution’’ which gives the actual distribution of oc
cupation numbers in finite Fermi systems,

ns~E!5
(kns

~k!F~Ek2E!

(kF~Ek2E!
, ~4!

Ek5Hkk5(
s
ns

~k!es1(
s.p

uspns
~k!np

~k! ,

wherens
(k)[^kun̂suk& equals 0 or 1,es are the energies o

single-particle orbitals, andusp5Vsp→sp is the diagonal ma-
trix element of residual interaction. In practice, the seco
term in the definition ofEk can be substantially reduced b
an appropriate choice of the mean field. The denominato
Eq. ~4! stands for the normalization of theF distribution.
This ‘‘microcanonical’’ distribution is convenient for nu
merical calculations.

It is instructive to compare theF distribution ~4! with
occupation numbers obtained by making use of the stand
canonical distribution,

ns~T!5
( ins

~ i !exp~2E~ i !/T!

( iexp~2E~ i !/T!
, ~5!

whereT is the temperature. The difference between Eqs.~4!
and ~5! is that the summation in Eq.~4! is performed over
simple basis states while in the canonical distribution
summation is carried out over exact eigenstates. Another
ference is that in Eq.~4! the occupation numbers are calc
lated for a specific energyE of system unlike specific tem
R13 © 1997 The American Physical Society
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R14 55V. V. FLAMBAUM AND F. M. IZRAILEV
peratureT in Eq. ~5!. However, Eqs.~5! and ~4! can be
compared with each other by settingE5^E&T .

It is important to demonstrate that theF distribution ~4!
tends to the standard FD distribution in the limit of lar
number of particles. By performing explicitly the summatio
over ns50 andns51, the expression~4! can be written in
the form

ns~E!5
01Zs~n21,E2 ẽs!

Zs~n21,E2 ẽs!1Zs~n,E!
. ~6!

Here, the partition function is introduced
Zs(n,E)5(k8F(Ek2E), where the summation is taken ov
all states ofn particles with the orbitals excluded. Corre-
spondingly, the sum inZs(n21,E2 ẽs) is taken over the
states ofn21 particles with the orbitals excluded; this sum
appears from the terms for which the orbitals is filled
(ns51). For such states one can writeEk(n)
5 ẽs1Ek(n21), whereEk(n21) is the energy of the basi
state withn21 particles andẽs5es1(pÞsuspnp

(k) Note that
to add the energyẽs to Ek(n21) is the same as to subtract
from E becauseF5F(Ek1 ẽs2E).

By taking ẽs independent ofk we assume the averagin
over the basis states near the energyE is possible. The num-
ber of termsN in the partition functionZs is exponentially
large, N5 m!/(m2n)!n!, therefore, one should conside
lnZs, which has slow dependence onn. In the case of a large
number of particles one can get lnZs(n2Dn,E2ẽs)
5 lnZs(n,E)2asDn2bsẽs, where as5 ] lnZs/]n ;bs
5 ] lnZs/]E ;Dn51. This leads to the ‘‘FD’’ type of the dis-
tribution,

ns5@11exp~as1bsẽs!#
21. ~7!

If the number of substantially occupied orbitals in the de
nition of Zs is large, the parametersas andbs are not sen-
sitive as to which particular orbitals is excluded from the
sum and one can assumeas5a[2m/T,bs5b[1/T. The
chemical potentialm and temperatureT can be found from
the conditions

(
s
ns5n, (

s
esns1(

s.p
uspnsnp5E. ~8!

In the case of many noninteracting particles~ideal gas!
similar procedure transforms the canonical distribution~5! to
the FD distribution~see, e.g.,@5#!. It is easy to check that the
canonical distribution coincides with the FD distributio
with a high accuracy even for a very small number of p
ticles, provided the number of effectively occupied orbitals
large ~when T@e or m@e). However, for the fixed tota
energyE, the temperatureT in these two distributions is
different. This difference can be explained by the dep
dence of the parameteras on es @see Eq.~7!#. Indeed, using
expansionas5a(eF)1a8(es2eF) one can obtain the rela
tion between the FD (bFD) and canonical (b) inverse tem-
peratures:bFD5b1a8eF .

Now, we can study the accuracy of the distributions~4!,
~5!, and ~7! in the description of realistic quantum system
As is known, the FD distribution is valid if the gas of pa
ticles can be considered as ideal; therefore, when the res
interaction is small enough,G !m;nd0 or G!T ~hered0 is
the mean energy spacing for single-particle states!. It is also
-

-
s

-

.

ual

assumed that the number of particles is large,n@1. How-
ever, the equilibrium distribution for occupation numbe
arises for much weaker condition, namely, when the num
of principal componentsNPC in exact eigenstates@see Eq.
~2!# is large,NPC;G/D@1 . In this case the fluctuations o
the occupation numbers; NPC

21/2 . Since the energy interva
D for many-body states is exponentially small, it is enou
to have relatively weak residual interactio
V0@D;d0exp(2n) in order to get the equilibrium distribu
tion.

There are four regions of parameters depending on
strength of interaction and number of particles:~i! ‘‘regular’’
states,NPC'1 for V0,D; ~ii ! ‘‘initial chaotization,’’ which
is characterized by a relatively large number of ‘‘random
principal components, say,NPC;G/D>10; however, the
fluctuations are still large,NPC

21/2>0.1; ~iii ! equilibrium F
distribution~4!, which is characterized by small fluctuation
NPC

21/2!1 or NPC;G/D>100; in this case components o
eigenstates can be treated as random variables with the
anceF and the Eq.~4! gives actual distribution of the occu
pation numbers in quantum systems with interacting p
ticles; ~iv! canonical distribution~5!, which arises in the case
of equilibrium plus large number of particles. If, in additio
the conditionG!nd0 is fulfilled, the standard FD distribu
tion is valid.

In practice, the condition~iv! of ‘‘thermalization’’ is not
easy to satisfy in realistic systems like atoms or nuclei si
n in this estimate is, in fact, the number of ‘‘active’’ particle
~number of particles in the valence shell! rather than the tota
number of particles. Thus, the equilibriumF distribution~4!,
which does not require the thermalization condition~iv! is
more accurate.

To test the above statements we have performed a
tailed numerical study of the model of two-body rando
interaction. This model~see details in@3,4#! is described by
few parameters: numbern of particles, numberm of orbitals,
and ratioV0 /d0 of the two-body interaction strength to th
spacing between single-particle levels. For very small int
action the eigenstates are ‘‘regular’’ and the occupation nu
ber distributionns is a strongly fluctuating function eve
after averaging over a number of close eigenstates; see
1. With an increase of the interaction keeping the numbe
particles small, we obtain equilibriumF distribution, which
is different from the FD distribution~see below!.

If, instead, we increase the number of particles keep
the interaction small,V0!d0, the distribution~4! tends to the
FD one@Fig. 2~a!#. Finally, when the strength of the interac
tion is beyond the ideal gas approximation, the equilibriu
distribution strongly deviates from the standard FD distrib
tion @Fig. 2~b!#. In fact, the latter result happens for a rel
tively small interactionV0;0.1d0 which, however, results in
the large value of spreading width,G.d0 sinceG increases
with the number of particles very fast.

However, the accuracy of the FD distribution can be i
proved by renormalizing the temperature. The point is t
statistical effects of the interaction can be, at least in p
described by introducing an effective temperature, which
greater than that determined from Eq.~8! at E5E( i ) . Thus,
we showed in Ref.@4# that the interaction between particle
which leads to the spreading widthsg of the single-particle
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55 R15DISTRIBUTION OF OCCUPATION NUMBERS IN . . .
orbitals, can be mimicked by an increase of the temperat
namely, ns(es ,g,T)'ns(es ,g50,T1DT)[ns(es ,T̃); for
g!T one can obtainDT'g2/48T. Below we present two
stronger arguments. Firstly, we are mainly interested in
eigenstates in the lower half of the spectrum. For them
mean-field energy~8! is substantially higher than the eige
valueE( i ). Indeed, the mean-field energy ‘‘does not know
about the effect of level repulsion, which shifts lower eige
values downwards~this shift appears in the second-order p
turbation theory!. Therefore, it is better to estimateE by the
unperturbed energyHii instead of the eigenvalueE

( i ). Thus,
the energyE5E( i )1D1

( i ).Hii , which is higher than the en
ergy of the eigenstate, should be used in Eq.~8!.

Secondly, there is another effect which contributes to
energy shiftD ( i ). The density of states rapidly increases w
energy, and the number of higher-energy basis states
mixed to the eigenstate is greater than that of the low
energy basis states~the extreme example is the ground sta
which is made up of higher basis components only!. It is
easy to estimate the corresponding increase of the mean
energy due to this effect if the spreading functi
F@Ek2E( i )# is symmetric~to separate the two effects we s
D1
( i )50 here!:

D2
~ i !5E Fk

~ i !~Ek2E~ i !!r0~Ek!dEk.
d~ lnr0!

dE
~DE!2. ~9!

Herer0 is the unperturbed level density, and(DE)
2 is given

by Eq. ~3!. According to @7#, the shape of the density o
states form@n@1 is close to Gaussian for both nonintera
ing and interacting particles, with the center of the spectr

FIG. 1. Distribution of occupation numbersns for n54 particles
and m511 orbitals for the two-body random interaction mod
@3,4# with d051, weak interactionV050.04, and total energy
E517.33 ~to compare with the ground state energyEF'12.1).
Dashed boxes represent numerical data averaged over 20 H
tonian matrices of the sizeN5330 with different realization of the
random interaction and over the energy rangeE6dE with
dE50.25. Circles correspond to the FD distribution with tempe
tureT and chemical potentialm defined by total numbern of par-
ticles and total energyE . Stars are given by theF distribution ~4!
for ns(E). The number of principal components in exact eigensta
is NPC'13. The latter has been calculated via the inverse par
pation ratio,NPC5@(kFi

2(Ek2E)#21. Large fluctuations;NPC
21/2

are seen.
e,

e
e

-
-

e

d-
r-

eld

Ec and variances (sE)
2 and (s̃E)

25(sE)
21(DE)2 respec-

tively. Therefore, one can obtain simple estimates of
shifts:

D1
~ i !.~Ec2E~ i !!~DE!2/2~sE!2, D2

~ i !.2D1
~ i ! . ~10!

Taking into account these energy shifts and Eq.~8! one can
estimate the increase of the effective temperature of
Fermi gas due to the interaction.

The accurate calculation of this effect requires more
tailed knowledge of the spreading functionF, including its
weak ‘‘nonresonant’’ energy dependence onEk and E( i ).
However, the occupation numbers determined by theF dis-
tribution ~4! are not very sensitive to a particular choice
the spreading function provided the conditionsANPC@1 and
Eq. ~3! are fulfilled. To check this statement we have co
sidered the form of the spreading function which takes i
account important features of the actual distributionFk

( i ) If
the interaction is small, in the region not very far from th
maximum,Fmax;D/G}r21, the spreading functionFk

( i ) can
be described by the Breit-Wigner form with the spreadi
width GBW52pV2/D @6#. Also, there is a shift of the maxi
mum due to the repulsion between neighboring levels. Th
arguments allow us to suggest the improved expression
the spreading function valid forGBW,G:

il-

-

s
i-

FIG. 2. Distribution of occupation numbersns for larger number
n514 of particles andm528 of orbitals with the samed0 and
temperature. Direct diagonalization of huge Hamiltonian matrice
not possible in this case. Circles are the FD distribution; stars
the F distribution ~4!. ~a! Weak interaction,V050.003, G'0.62,
NPC'60. ~b! Strong interaction,V050.08, G'16.6,NPC'11 000.
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Fk
~ i !}

@r0~Ek!r~E~ i !!#21/2

F ~Ek2E!21
G1
2

4 GF ~Ek2E!21
G2
2

4 G , ~11!

where E5E( i )1D1
( i ) , G15GBW , and G25G2/G1. The

value ofG2 is found from the exact relation~3!. Note that
Fk
( i ) from Eq. ~11! automatically satisfies another exact re

tion, ( iE
( i )Fk

( i )5Ek ; note that the contribution of the energ
shift D1

( i ) is compensated by the increase of the level den
r(E( i )).

It follows from Eq. ~11! that the energy shift due to th
enhanced admixture of higher basis components is two ti
smaller than in Eq.~9!, since the increase of densityr0 is
partially compensated by the factorr0

21/2 in Eq. ~11!:

D2
~ i !.

d~ lnAr0!

dE
~DE!2.D1

~ i ! . ~12!

Thus, we should substitute the valueE5E( i )

1D1
( i )1D2

( i ).2Hii2E( i ) into Eq. ~8!. After taking this shift
into account the FD expression gives the same result as
F distribution, as shown in Fig. 2~b!, where the FD curve
~circles! is shifted with respect to that given by stars; bo
curves also agree with the numerical experiment~Fig. 3!.

For smallV0 and a large number of particles we ha
D1
( i )!G1!G2 , therefore, in the central part the distributio

~11! has the Breit-Wigner shape with the widthGBW . How-
ever, numerical calculations@1,2,8# demonstrate that a
larger interactionV0 the width of the spreading function be
comes linear inV0 and it is better to putG15G25G. One

FIG. 3. Distribution of occupation numbers for the Ce ato
parametersn54,m511,d051,V050.12,NPC'48 ~boxes! in com-
parison with the FD distribution, with the corrected temperat
~circles! and with theF distribution ~stars!.
.
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can write the extrapolation expression both for small a
large values ofV0 ~see also@8#! G15GBWG/(GBW1G). We
have also checked that for large numberNPC of principal
components the distribution of the occupation numbers d
not depend onG1; this fact can be treated as a signature
the equilibrium.

Finally, we discuss the transition to mesoscopic syste
The result depends on the dimensionalityd of the system
sinced0; l22;V0; l2d, therefore,V0 /d0; l2(d22), wherel
is the size of the system. Thus, ford51 one hasV0@d0,
which means that strong mixing~chaos! starts just from the
ground state. This is in accordance with the absence of a
in the distribution of occupation numbers in the on
dimensional~1D! case~Luttinger liquid!. In the 3D case we
haveV0!d0 and the admixture of the higher states to t
ground state can be considered perturbatively, which is c
sistent with the nonzero gap atT50 . One can see that th
transition between regular region~I! and the initial chaos
region II in the 3D case occurs for high states wh
V0.D;d0exp(2n2* ), wheren2*}E1/2 is a number of excited
particles. On the other hand, the transition from the fluctu
ing to the equilibrium regime,~II !→ ~III !, requires the de-
crease ofD only by one order of magnitude:n3*'n2*12 .
This means that such transition in 3D is a very sharp ‘‘ph
transition.’’

In conclusion, we developed a method for the calculat
of the occupation numbers in finite systems of interact
particles. The method is based on the assumption that e
eigenstates are ‘‘chaotic’’ superpositions of the shell-mo
basis states, and the smooth spreading function for the ei
states components can be introduced. This assumption
the results are confirmed by numerical experiments. T
‘‘microcanonical’’ partition function that we have introduce
can be used for further studies of statistical and thermo
namic properties of finite systems of interacting particles

We also demonstrated that occupation numbers in the
tems of interacting particles can be reasonably described
Fermi-Dirac distribution with renormalized parameters.
usual, mean field~and possibly other ‘‘regular’’ effects! can
be included into single-particle energiesẽs . Statistical ef-
fects of the residual interaction~mainly due to nondiagona
matrix elements of the Hamiltonian matrix! increase effec-
tive temperature.
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